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GENERAL INTRODUCTION 

 

An important aspect of synthetic organic chemistry is the creation of complex 

molecules for use in materials science, pharmaceuticals, and molecular biology. The 

invention of new methods, strategies, and reactions is of great importance to the progress of 

organic synthesis. In this thesis we explore total syntheses as well as methodologies that we 

used to synthesize various biologically active molecules and/or intermediates that can be 

used to synthesize important classes of molecules. 

 Chapter 1 describes our construction of the benzo[b]fluorene core of kinobscurinone. 

Kinobscurinone has been found to be an important intermediate in the synthesis of stealthins 

and kinamycins that have potent antioxidant and antitumor properties, respectively. We used 

a two-step sequence of Michael addition and an LDA mediated cyclization to construct the 

tetracyclic core. This work has been published in Tetrahedron Letters in 2012 (Kraus G. A.; 

Chaudhary, D.; Yuan, Y.; Schuster, A. Tet. lett. 2012, 53(33), 4444-4446).  

Chapter 2 describes our recent study of the rearrangement of benzyl phenyl ethers to 

the corresponding ortho-benzyl phenols in the presence of boron trifluoride. The utility of 

this methodology was demonstrated in the synthesis of biologically active 2,3-

diarylbenzo[b]furans using a two-step sequence of benzoylation followed by a base-

mediated cyclization. This work was published in 2012 in Tetrahedron letters (Kraus G. A.; 

Chaudhary D. Tet. lett. 2012, 53(52), 7072-7074). 

Chapter 3 describes the first total synthesis of biologically active 3-farnesyl salicylic 

acid and its analogues. These analogues were tested for their antibacterial activity against 

two strains of bacteria. This work was conducted in collaboration with veterinary medicine 
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scientists at Iowa State University and has been published in Natural Product 

Communications (Kraus G. A; Chaudhary D.; Riley S.; Liu F.; Schlapkohl A.; Weems M.; 

Phillips G. J. Nat. Prod. Comm. 2013, 8(7), 911-913). 
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CHAPTER 1. Construction of tetracyclic framework of kinobscurinone 

 

Introduction: 

            Many diseases, such as atherosclerosis, inflammation, Parkinson’s disease and 

ischemic injuries to the central nervous system (CNS) and cardiovascular system have been 

proven to be caused by oxygen-derived free radicals. Free radicals are highly reactive 

species which can easily capture an atom from another molecule, starting a chain reaction. 

The cellular zone where oxygen is more active is the mitochondria, endoplasmic reticulum 

and membranes. During the normal metabolic processes, free radicals form and damage the 

mitochondria and cellular membranes, which are generally renewed every 5-6 days. In 

cancer and ischemia the oxidative damage is so high that the repairing processes are 

insufficient, and the membranes are damaged beyond repair. The diseases caused by free 

radicals have been reported to be ameliorated by free radical scavengers such as superoxide 

dismutase (SOD). SOD is a naturally occurring extremely potent antioxidant enzyme that 

can help protect against cell destruction. It has the distinct ability to neutralize superoxide, 

one of the most damaging free radical substances in the body. Like so many other protective 

compounds that naturally occur in the body, it decreases with age, making cells more 

vulnerable to the oxidants which cause aging and diseases.   

          During 1990-1991, in the course of screening for free radical scavengers of microbial 

origin to overcome these diseases, Seto and coworkers isolated Stealthins A and B from 

Streptomyces viridochromogenes 2220-SV2 
2
, which were shown to possess an 

unprecedented benzo[b]fluoren-10-one skeleton (Figure 1). They exhibited a potent in vitro 

free radical scavenging activity in a rat liver microsome system with IC50 values 0.04 µg/mL 
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and 0.07 µg/mL, respectively. These values are approximately 20-30 times stronger than 

that for vitamin E (10.8 mg/ mL)
3
. 

 An interesting structural feature of these compounds is the NMR silent nature. No 

signals are observed in the 
1
H- and 

13
C-NMR of these compounds. Seto attributed the failure 

of observation of any signals to the extensive line broadening caused by many tautomeric 

forms of this unique chromophore including various keto forms and imine form. 

   

Figure 1. The general structure of Stealthins 

The strong biological activities as well as the identification of structurally similar 

natural products, stealthin C (3, Figure 1), kinafluorenone, prekinamycin, and kinamycin 

antibiotics have resulted in the growing interest in this group of compounds. Their synthesis 

has become an active area of research since 1996 when Gould and coworkers first 

synthesized stealthin C (3, Figure 1) and demonstrated its existence in kinamycin 

biosynthesis.
4
 

Various syntheses to put together the tetracyclic core of the stealthins have been 

reported so far. Strategies that make use of Diels Alder reaction and Friedel-Crafts reaction 

have been successfully employed towards the synthesis of stealthins and their derivatives. In 

1994, Gould and Melville
5
 showed the presence of a new important intermediate 

kinobscurinone (Figure 2) in the biosynthesis of kinamycins. 
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Figure 2. Kinobscurinone 

Kinobscurinone was also found to be NMR silent. To test the rationale put forward 

by Seto for the “NMR silent” behavior of stealthins, NMR experiments were conducted in 

deuterated trifluoroacetic acid and deuterated pyridine to disfavor rapid tautomerization. The 

NMR still failed to show any peaks and the reason for the NMR silent nature has now been 

ascribed to the existence of polycyclic aromatic quinones at a radical oxidation state under 

ambient conditions. Presence of a single line in ESR confirmed the presence of an unpaired 

electron. It was further shown that 6% of kinobscurinone molecules contain an unpaired 

electron at a given time which should be sufficient to broaden the NMR signals by 

relaxation to the point where they could not be observed.
5
 Kinobscurinone radical is better 

represented by neutral or anionic species (Figure 3). 

 

Figure 3. Representation of kinobscurinone radical 
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Kinobscurinone presents an interesting target for synthesis as it has been shown to be 

present in the synthesis of kinamycins and stealthin C. Since a synthesis of kinobscurinone 

would constitute the formal synthesis of above class of compounds, a number of syntheses 

for kinobscurinone have been reported.  

Gould’s synthesis of kinobscurinone 

In the first synthesis approach to kinobscurinone, Gould and co-workers
 
envisioned 

fashioning the ABD ring through the coupling of cyanopthalide with an appropriately 

substituted cinnamate (Scheme 1).  

 

Scheme 1. Gould’s synthesis of kinobscurinone. 

While effective in reaching the goal of fashioning kinobscurinone, this route suffered 

from several mass-limiting steps. The problems were later addressed and subsequently 

corrected in a revised route to Kinobscurinone (Scheme 2). They capitalized on the 

versatility of ketone 1 by treating it with hydroxylamine hydrochloride to give the 

corresponding oxime. Demethylation using BBr3 followed by the oxidation of the 
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corresponding hydroquinone with dithionate provided stealthin C. The role of stealthin C 

was later demonstrated in the biosynthesis of kinamycins. 

     

Scheme 2. Gould’s revised route to kinobscurinone and divergence to stealthin C 

Snieckus’ synthesis of kinobscurinone 

Snieckus and co-workers formulated an approach to Kinobscurinone based on a key 

remote-carbamoyl migration reaction
6
 (Scheme 3). The construction of the core was 

envisioned on the basis of a key remote metalation-carbamoyl migration reaction, which 

necessitates prior silicon protection. The most reactive metalation site in 21 was protected 

using low temperature metalation-silylation procedure. This step also eliminated any 

possibility of anionic ortho-Fries rearrangement. The critical O         C ring-to-ring 

carbamoyl transfer was accomplished with excess LDA to give the corresponding phenol 
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which was later methylated to give 23 which underwent a second remote metalation-

cyclization to furnish fluorenone 24. Treatment of 24 with TFA affords kinobscurinone. 

Scheme 3. Snieckus’ synthesis of Kinobscurinone 

Jones’ synthesis of benzo[b]flurenone skeleton 

Taking a different approach, Qabaja and Jones utilized a Palladium-mediated Heck 

cyclization for closure of aryl iodide to secure the ring C of benzo[b]fluorenone core 

structure.
7
 Aldehyde 26 was subjected to 1,2-addition of lithioarene derived from aryl 

bromide 27. The resulting benzylic alcohol was oxidized with PCC to give ketone 29. In the 

last step, microwave-assisted closure catalyzed by PdCl2(PPh)3/ NaOAc in DMA effectively 

secures the target, 30 (Scheme 4). 
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Scheme 4. Jones’ synthesis of benzo[b]flourenone 

Results and Discussion: 

Our incentive for this project was the presence of benzo[b] fluorenone skeleton in 

various biologically significant compounds.  An entirely different strategy that uses a 

Michael addition/cyclization reaction sequence has been used towards the construction of 

the tetracyclic core of kinobscurinone. Although a cyclopentenone or an indenone would be 

the logical Michael acceptor, annulation reactions involving cyclopentenones and indenones 

can proceed in low yields due to their sensitivity to strongly basic conditions. Based on the 

work that nitroalkanes undergo efficient Michael addition to cyclopentenones
8
, we 

envisaged a route towards the tetracyclic core of kinobscurinone using an indenone, 5 and a 

Michael donor, 6 to give 4, which can then be cyclized and oxidized to give 2. 
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Scheme 5. Retrosynthesis of Kinobscurinone, 2, R= SO2Ph 

Our synthesis commenced with the preparation of the Michael donor 6. Michael 

donor 6 was prepared from ethyl-2-hydroxy-6-methylbenzoate, 31 by the condensation of 

commercially available crotonaldehyde and ethylacetoacetate in 50% yield over three steps 

9
(Scheme 6). The phenol 31 was then protected using benzenesulfonyl chloride to give 32 in 

77% yield. Compound 32 was then subjected to radical benzylic bromination to make 33 in 

75% yield, followed by nucleophillic substitution of the bromide with the nitro group using 

silver nitrite
10

 to form the Michael donor 34 in 50% yield. 

 

Scheme 6. Synthesis of Michael donor 6 
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We then turned our attention to the formation of the indenone 5 (Scheme 7). The 

synthesis starts with the reduction of commercially available dihydrocoumarin
11

 35. 

Compound 35 underwent intramolecular Friedel-Crafts acylation
12

 when it was treated with 

AlCl3 and NaCl at 210 
o
C to give hydroxyindanone 37. Hydroxyindanone 37 was protected 

using benzenesulfonyl chloride to give 38 in 87% yield. Benzenesulfonyl chloride was the 

reagent of choice as the Michael donor we had previously made was also protected using the 

same reagent. Having same protecting groups on the molecule will allow for one step 

deprotection in the later stages of the synthesis. The indanone 38 was subjected to Sageusa 

oxidation
13 

conditions to afford the desired indenone, 5 in 66% yield.   

 

Scheme 7. Synthesis of the indenone 5 

Other indenones that were prepared included methyl ether and TBS ether analogues 

of indenone 40 (Figure 4). These indenones were less stable than 5 and their reactions with 

the Michael donor were not successful, presumably because of the electron donating nature 

of these groups which can make the α,β-unsaturated ketone less electrophilic. 
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Figure 4. Methyl ether  and TBS ether analogues 

 Though the oxidation in the last step shown in Scheme 7 gives the indenone in good 

yield, it uses stoichiometric amounts of palladium (II) acetate, which makes the use of this 

reaction impractical on larger scales. So we sought alternate reagents that could achieve this 

transformation cost effectively. The first thought we had, was to introduce an inexpensive 

oxidant that could oxidize palladium (0) back to palladium (II), thereby eliminating the use 

of stoichiometric amounts of palladium (II) acetate. We tried the same reaction with 

catalytic amounts of palladium (II) acetate, using O2 as the oxidant. These reaction 

conditions afforded the desired indenone in only 5% yield. After screening a couple of 

reaction conditions, we found that the reaction of the indanone with iodic acid, HIO3 in 

DMSO 
14

 afforded the desired indenone cleanly in 87% yield (Scheme 8). 

 

Scheme 8. Improved reaction conditions for the synthesis of indenone 5 

 After successfully synthesizing the Michael acceptor and donor for the key Michael 

addition reaction, we decided to try the key reaction with commercially available or easily 

makeable acceptors and donors. Our first attempt towards Michael addition was a reaction 

between commercially available nitromethane and indenone 40 (Scheme 9), which can be 
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synthesized from commercially available coumarin via Friedel-Crafts acylation and 

oxidation as described before.  

 

Scheme 9. The key Michael addition reaction on Model system 1 

 Encouraged with the success of the key step we decided to test these reaction 

conditions on a more complicated system. Subjecting indenone 40 and ethyl 2-

(nitromethyl)- benzoate, 41 to same set of conditions afforded the Michael adduct 42 in 68% 

yield (Scheme 10). Other solvents and bases were also used to affect cyclization but DBU in 

acetonitrile was found to be the most effective reagent for Michael addition. With two 

successful examples of Michael addition with our set of reagents, we next worked towards 

attaching indenone 5 and Michal donor 6 (Scheme 11). The reaction proceeded in 72% yield 

to give an inseparable mixture of diastereomers of 4. 

 

Scheme 10. Michael addition on Model system 2 
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Scheme 11. The key Michael addition reaction on the real system.  

 We then focused our attention to the cyclization of the Michael adduct to put the core 

of tetracyclic structure in place. Previous work in our group (Scheme 12) had shown the 

utility of this Michael addition/cyclization protocol towards the syntheses of various 

tetracyclic and tricyclic ketones in low to modest yields (Figure 5). Sodium methoxide was 

the base of choice for the cyclization.  

 

Scheme 12. Previous strategy for the Michael addition/cyclization sequence 

  

Figure 5. Various tetracyclic and tricyclic ketones that were synthesized using Scheme 12 

 Unfortunately, use of sodium methoxide for the cyclization of Michael adduct, 42 

did not result in the cyclized product. After screening various bases, LDA was found to be 

the most effective. The model compound 42 was treated with 2.2 equiv. of LDA to affect 
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cyclization to give the tetracyclic product 43 (Scheme 13). The use of LDA not only 

afforded the cyclized product, it also removed the nitro group from the product unlike the 

work that was done previously using NaOMe. 

 

Scheme 13. Cyclization of Michael adduct 42 

The same reaction conditions were employed to cyclize the real system, 4 in 23 % yield 

(Scheme 14). The lower yield can be attributed to the presence of a more acidic proton next 

to the nitro group. 

 

Scheme 14. LDA assisted cyclization of the real system 

 The compound 44 can then be converted into kinobscurinone 2 by oxidation 

followed by the deprotection of the benzenesulfonyl groups (Scheme 15).  
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Scheme 15.  Pathway to reach kinobscurinone 2, from 44 

 Various oxidizing agents such as ceric ammonium nitrate, PIFA and Fremy’s salt 

(Figure 6) have been shown to oxidize a phenol into a quinone.
15 

We decided to try these 

oxidizing agents to get 45 from 44. Unfortunately, none of these oxidizing agents were 

successful in oxidizing the phenol 44 to quinone 45. The reason could be attributed to the 

fact that the phenol 44 is flanked by rings that contain electron withdrawing groups, which 

reduce the ability of the phenol to undergo oxidation. The other strategy could be the 

removal of the electron withdrawing protecting groups to make the oxidation easier. But as 

shown in Scheme 16, this strategy will leave open many a sites susceptible to oxidation - 

this route was not examined further. 

 

Figure 6. Structures of PIFA and Fremy’s salt 
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Scheme 16. Possible products from deprotection-oxidation strategy  

Conclusions:  

 Since its isolation and characterization in 1994, kinobscurinone has been shown to be 

an important intermediate in the synthesis of stealthins and kinamycins. The remarkable 

antioxidant and antibiotic activities of these compounds will continue to inspire many new 

syntheses in the future. Our work has demonstrated the utility of Michael 

addition/cyclization sequence to secure the tetracyclic core of benzo[b]fluorenones. Future 

work on this project will focus on the screening of different oxidizing agents to synthesize 

the oxidized product from the cyclized phenol. Furthermore, different protecting groups can 

be used to make the oxidation more effective.     

Experimental: 

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 or 

400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Chemical shifts in 

CDCl3 were reported downfield from TMS (= 0 ppm) for 
1
H NMR.  For 

13
C NMR, chemical 



www.manaraa.com

18 
 

shifts were reported relative to the solvent signal [CDCl3 (77.15 ppm)].  All reactions were 

carried out under argon unless otherwise noted.  Thin-layer chromatography was performed 

using commercially available 250 micron silica gel plates (Analtech).  Commercially 

available 1000 micron silica gel plates (Analtech) were used for preparative thin-layer 

chromatography.  Visualization of TLC plates was effected with short wavelength ultra 

violet light (254 nm).  High resolution mass spectra were recorded on an Agilent 6540 

QTOF using EI or ESI.  All reagents were used directly as obtained commercially unless 

otherwise noted. 

 

Ethyl-2-hydroxy-6-methylbenzoate (31).  To a magnetically stirred solution of sodium 

(0.327 g) dissolved in ethanol (5 mL) was added ethylacetoacetate (3.44g, 49.10 mmol). 

After the reaction mixture was cooled in an ice bath, purified crotonaldehyde (6.39g, 49.10 

mmol) in ethanol (5mL) was added drop-wise and the resultant reaction mixture was stirred 

at room temperature overnight. Dry HCl gas was passed through the resulting brown 

solution until the color lightened to pale yellow. It was then stirred at room temperature for a 

day. It was then concentrated in vacuo and dissolved in dry DMF (10 mL). 6.83g of CuCl2 

and 2.96 g of LiCl were added and the resulting mixture was then heated at 90 
o
C overnight. 

The dark brown mixture, after it was cooled to room temperature, was diluted with ice cold 

water and poured on a celite
®
 gel bed. After filtration under vacuum the crude solid was 

washed with water to remove DMF. The crude product was purified using 10% ethyl acetate 
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in hexanes. 
1
H NMR (400 MHz, CDCl3): δ 11.44 (s, 1H), 7.21 (t, J = 8.4 Hz, 1 H), 6.81 (d, J 

= 8.0 Hz, 1 H), 6.65 (d, J = 8.0 H, 1H), 4.37 (q, 2H), 2.50 (s, 3H), 1.39 (t, J = 8.0 Hz, 3H). 

 

Ethyl-2-methyl-6-((phenylsulfonyl)oxy)benzoate (32). A solution of benzenesulfonyl 

chloride (2.18 mL, 71.03 mmol) in THF (5 mL) was added drop-wise to a solution of 31 

(2.05 g, 11.35 mmol) and triethylamine, Et3N (2.38 mL, 17.03 mmol) in THF (20 mL) at 

room temperature. The reaction mixture was allowed to stir at room temperature overnight 

and it was then poured into water. The mixture was extracted with ethyl acetate and the 

organic layer was washed with 10% aqueous HCl three times, saturated aqueous NaHCO3 

(twice) and brine and dried over MgSO4 and concentrated in vacuo. The product was 

purified via silica gel chromatography using 20 % ethyl acetate in hexanes to give 32 in 87% 

yield.
 1

H NMR (300 MHz, CDCl3): δ 7.81 (d, J = 9.0 Hz, 2H), 7.61 (t, J = 6.0 Hz, 1H), 7.47 

(d, J = 6.0 Hz, 2H), 7.16 (t, J = 6.0 Hz, 1H),  7.04 (d, J = 6.0 Hz, 1H), 6.88 (d, J = 6.0 H, 

1H), 4.21 (q, 2H), 2.27 (s, 3H), 1.27 (t, J = 9.0 Hz, 3H). 

 

Ethyl-2-(bromomethyl)-6-((phenylsulfonyl)oxy)benzoate (33). NBS (1.93g, 10.84 mmol)  

and AIBN (0.081 g, 0.49 mmol) were refluxed in benzene (25 mL). A solution of 32 (3.16 g 

, 9.86 mmol) in benzene (5 mL) was added drop-wise to the refluxing solution. The reaction 

mixture was refluxed overnight. After cooling the reaction mixture to room temperature, it 
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was diluted with ethyl acetate. It was then washed with water, brine and dried over MgSO4. 

The product was purified via silica gel chromatography using 15% ethyl acetate in hexanes.
 

1
H NMR (300 MHz, CDCl3): δ 7.83 (d, J = 6.0 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 

7.5 Hz, 2H), 7.32-7.30 (m, 2H),  7.04 (t, J = 4.5 Hz, 1H), 4.58 (s, 2H), 4.29 (q, 2H), 1.34 (t, 

J = 7.5 Hz, 3H). 

 

Ethyl-2-(nitromethyl)-6-((phenylsulfonyl)oxy)benzoate (34).  In a 100 mL flask were 

placed AgNO2 (1.84 g, 11.92 mmol) and diethyl ether, Et2O (20 mL) at 0 
o
C, and the flask 

was purged with argon and covered with aluminum foil. Ethyl-2-(bromomethyl)-6-

((phenylsulfonyl)oxy)benzoate, 33 ( 1.19 g, 2.98 mmol) in Et2O (10 mL) was then added 

drop-wise using a syringe. The reaction mixture was stirred overnight at room temperature. 

It was then filtered, washed with H2O, and dried over MgSO4. The product was purified via 

silica gel chromatography using 30% ethyl acetate in hexanes to give pure product in 51% 

yield. 
1
H NMR (300 MHz, CDCl3): δ 7.81 (d, J = 6.0 Hz, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.57 

(t, J = 7.5 Hz, 2H), 7.37-7.35 (m, 2H),  7.19 (t, J = 4.5 Hz, 1H), 5.62 (s, 2H), 4.28 (q, 2H), 

1.32 (t, J = 7.5 Hz, 3H). 

 

7-Methylchroman-2-one (36). 7-methylcoumarin 35, (1.09 g, 6.8 mmol) in ethyl acetate 

(20 mL) was added slowly to a three-necked flask containing 10% Pd/C (0.16 g) in ethyl 
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acetate. The mixture was stirred under a hydrogen atmosphere for 6 h at room temperature. 

The reaction mixture was filtered through a layer of Celite 
®
 in a sintered glass funnel and, 

after evaporation of the solvent, colorless oil was left, which crystallized on standing. 

Drying under vacuum overnight left 36 as off-white crystals. 
1
H NMR (400 MHz, CDCl3): δ 

6.98 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 2.85 (t, J = 10.0 Hz, 2H), 

2.64 (t, J = 8.0 Hz, 2H), 2.23 (s, 3H). 

 

4-Hydroxy-6-methyl-2,3-dihydro-1H-inden-1-one (37). AlCl3 (1.51g, 2.22mol) and NaCl 

(0.30 g, 2.22 mmol) were mixed and heated in an oil bath. When the bath temperature was 

about 150 ºC, 36 (0.33g, 2.02 mmol) was added slowly. The bath temperature was then 

raised to 210 ºC and the mixture was stirred for 1 hour. The mixture was cooled to room 

temperature and quenched with 100 g crushed ice and 5 mL conc. HCl at 0 ºC. The 

suspension was stirred at room temperature for 30 minutes and the crude product was 

obtained as a gray solid upon filtration. The solid was purified via silica gel chromatography 

using 30% ethyl acetate in hexanes. 
1
H NMR (400 MHz, CD3OD): δ 7.00 (s, 1H), 6.87 (s, 

1H), 4.64 (s, 1H of OH), 2.96 (t, 2H), 2.65 (t, J = 8.0 Hz, 2H), 2.32 (s, 3H). 
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6-Methyl-1-oxo-2,3-dihydro-1H-inden-4-ylbenzenesulfonate (38). A solution of 

benzenesulfonyl chloride (0.68 mL, 5.13 mmol) in THF (2mL) was added drop-wise to a 

solution of 37 (0.65g, 4.01 mmol) and triethylamine, Et3N (0.84mL, 6.01 mmol) in THF (10 

mL) at room temperature. The reaction mixture was allowed to stir at room temperature for 

3.5 h and it was then poured into water. The mixture was extracted with ethyl acetate and the 

organic layer was washed with 10% aqueous HCl three times, saturated aqueous NaHCO3 

(twice) and brine and dried over MgSO4 and concentrated in vacuo. The product was 

purified via silica gel chromatography using 25 % ethyl acetate in hexanes. 
1
H NMR (300 

MHz, CDCl3): δ 7.88 (d, J = 9.0 Hz, 2H), 7.72 (t, J =  3 Hz, 1H), 7.56 (t, J = 9 Hz, 2H), 7.46 

(s, 1H), 7.04 (s, 1H), 2.78 (t, J = 6.0 Hz, 2H), 2.58 (t, J = 6.0 Hz, 2H), 2.34 (s, 3H). 

 

6-Methyl-1-oxo-1H-inden-4-ylbenzenesulfonate (5). 1.7 equivalence of HIO3.DMSO 

complex were prepared by heating HIO3 (2.46 g, 13.98 mmol) in DMSO (5 mL) at 80 
o
C for 

one hour. To this was added 1.74 mL of cyclohexene. To this was added a solution of 

indanone, 38 (2.11 g, 6.99 mmol) in DMSO (7 mL). The resulting mixture was heated in an 

aluminum foil wrapped sealed tube at 55
o
C overnight. The reaction mixture was then 

concentrated and purified via column chromatography using 15% ethyl acetate in hexanes. 

1
H NMR (300 MHz, CDCl3): δ 7.85 (d, J = 3.0 Hz, 2H), 7.70 (t, J = 3.0 Hz, 1H), 7.56 (t, J = 
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6.0 Hz, 2H), 7.23 (d, J = 6.0 Hz, 1H), 7.17 (s, 1H), 6.78 (s, 1H), 5.73 (d, J = 3.0 Hz, 1H), 

2.28 (s, 3H). 

 

4-Methoxy-1H-inden-1-one. 
1
H NMR (400 MHz, CDCl3): δ 7.76 (d, J = 8.0 Hz, 1H), 7.21 

(t, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 5.76 (d, J = 8.0 Hz, 

1H), 3.87 (s, 3H). 

 

4-((tert-butyldimethylsilyl)oxy)-1H-inden-1-one. 
1
H NMR (400 MHz, CDCl3): δ 7.52 (d, J 

= 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 

5.91 (d, J = 8.0 Hz, 1H), 1.01 (s, 9H), 0.21 (s, 6H). 

 

Ethyl2-((5-methyl-3-oxo-7-((phenylsulfonyl)oxy)-2,3-dihydro-1H-inden-1-yl)(nitro) 

methyl)-6-((phenylsulfonyl)oxy)benzoate (4). To a stirred solution of  ethyl 2-

(nitromethyl)-6-((phenylsulfonyl)oxy)benzoate, 34 (0.97 g, 2.65 mmol) and 6-methyl-1-oxo-
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1H-inden-4-yl benzenesulfonate, 5 (0.63 g, 2.10 mmol) in 10 mL acetonitrile was added  

DBU (0.40 mL, 2.65 mmol) at 0 
o
C under an Argon atmosphere and stirred at room 

temperature overnight, where it was worked up with 5 % aqueous HCl and  extracted with 

ethyl acetate  three times. The combined organic extracts were washed with brine, dried over 

MgSO4 and evaporated in vacuo. Purification via silica gel chromatography using 40 % 

ethyl acetate in hexanes yielded the desired Michael adduct as an inseparable mixture of 

diastereomers in 72% yield.  

 

10-Hydroxy-2-methyl-11-oxo-11H-benzo[b]fluorene-4,9-diyldibenzenesulfonate (44). 

To a stirred solution of freshly prepared LDA (2.2 eq.) in THF at -78 
o
C was added a 

solution of the Michael adduct (0.41 g, 0.61 mmol) in dry THF (10 mL) under an argon 

atmosphere. The reaction mixture was allowed to warm to room temperature, where it was 

stirred for 3 hrs. The reaction mixture was then worked-up with aqueous NH4Cl and 

extracted with ethyl acetate three times. The combined organic extracts were washed with 

brine, dried over MgSO4 and evaporated in vacuo. Purification via silica gel chromatography 

using 30 % ethyl acetate in hexanes yielded the desired cyclized product as a yellow 

compound in 23% yield. 
1
H NMR (300 MHz, CDCl3): δ 7.94 (d, J = 7.2 Hz, 4H), 7.66-7.62 

(m, 2H), 7.53-7.51 (m, 6H), 7.46- 7.43 (m, 2H), 7.32 (s, 1H), 7.11(d, J = 8.1 Hz, 1H), 7.09 

(s, 1H), 2.38 (s, 3H). 
13

C NMR (75 MHz, CDCl3): δ 21.6, 113.6, 116.4, 119.8, 121.5, 123.7, 

128.6, 128.9, 129.2, 129.6, 130.1, 132.7, 134.5, 135.0, 136.2, 138.5, 141.4, 142.0, 145.6, 
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147.7, 156.7, 194.3. HRMS (ESI) m/z exact mass calculated for C30H21O8S2 573.0672; 

found 573.0677.         
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CHAPTER 2. Conversion of aryl benzyl ethers to diarylmethanes. A direct synthesis of 

diarylbenzofurans 

Introduction: 

The diarylmethane subunit is contained in a variety of natural products.  

Representative members are shown in Figure 1 and include procyanidin B2 (1)
1
, 

diarylbenzofuran (2)
2
 and justicidin H (3)

3
.  Because many of these compounds exhibit 

useful biological activities, a number of synthetic approaches to the diarylmethane subunit 

have been reported.  Organometallic-based approaches 
4
 and Friedel-Crafts based 

approaches 
5
 are the most commonly reported strategies.  In some cases the former approach 

is limited by the requirement for regioselective metalation.  The latter approach has the 

disadvantage that after the acylation, a one- to two-step conversion of the benzophenone to 

the diarylmethane still needs to be accomplished. 

 

Figure 1. Compounds containing the diarylmethane subunit 

 Due to their unique positional selectivity, o-aryl rearrangements (Scheme 1) 

significantly increase the synthetic scope of aromatic substitution reactions involving 

carbon—carbon bonds. Although studies of o-aryl rearrangements by a number of groups 

have continued to persist, the studies have been limited to only benzyl phenyl ether, with 

reports focusing on the catalysts and/or the conditions.  
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Scheme 1. Rearrangement of benzyl phenyl ether  

The initial study on this type of rearrangement was done by W. F. Short in 1928,
 6

 

where he observed that benzyl phenyl ether on heating to 225 
o
C in presence of anhydrous 

zinc chloride, or to 180 
o
C in the presence of hydrogen chloride gave phenol, o-

hydroxydiphenylmethane and p-hydroxydiphenylmethane (Scheme 2). 

 

Scheme 2. Rearrangement of benzyl phenyl ether by Short 

Tarbell and coworkers in 1950 discussed in depth, the aluminum bromide-mediated 

rearrangement of benzyl phenyl ethers to o-benzyl phenol in chlorobenzene with respect to 

product distribution and temperature 
7
 (Scheme 3). They believed the rearrangement to 

occur by an intramolecular process, supported by the facts that the ratio of phenol to o-

benzyl phenol did not change by addition of excess phenol and that p-benzylphenol was not 

formed in this reaction. 
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Scheme 3. Rearrangement by Tarbell  

In 1972, Badr and El-Sherief studied the thermal rearrangement of benzyl naphthyl 

ethers.
8
 They observed that benzyl α-naphthyl ether on heating at 260

o
C for some days gave 

2- and 4-benzyl-1-naphthol, toluene, dibenzyl and 9- phenyl-3,4,5,6-dibenzoxanthene 

(Scheme 4). Benzyl β-naphthyl ether also rearranged under similar conditions to give 

corresponding rearranged products.  

 

Scheme 4. Explanation for the formation of the unexpected products in the thermal 

rearrangement 
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Rearrangement of benzyl α-naphthyl ether in quinoline gave the normal products of 

rearrangement together with 2- and 4- benzylquinolines and 2-quinolyl-1-

hydroxynapthalene (Scheme 5). The products of this thermal reaction differ markedly from 

the acid-mediated rearrangements, from which neither benzoxanthene nor toluene nor 

dibenzyl have been reported yet. Due to the formation of all these additional products, they 

concluded that the thermal rearrangement of the benzyl naphthyl ethers depends on a 

homolytic fission of the ether to benzyl and naphthyloxy radicals. 

 

Scheme 5. Additional products of the rearrangement of benzyl naphthyl ether in quinoline 

Luzzio and Chen in 2009 reported a clever camphorsulfonic acid mediated 

rearrangement of 2-nitroresorcinol ethers (Scheme 6).
9
 They observed that the presence of at 

least one electron releasing-group on the migrating ring allowed them to use a relatively 

milder camphorsulphonic acid as the mediator. The 2-nitro-1,3-resorcinolic pattern on the 

non-migrating ring tolerated the rearrangement well and allowed for only monosubstitution. 

The nitrophenolic diarylmethane products which were isolated in modest yields could be 

further transformed into heterocycles such as 2-aminobenzoxazoles and 2-arylbenzoxazoles. 
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Scheme 6. Luzio and Chen’s work  

This rearrangement has not been investigated extensively with respect to the scope 

and substrate generality and thus has acquired less synthetic efficacy than its conventional 

counterpart, the Fries rearrangement. We describe a Lewis acid-mediated rearrangement of a 

substituted benzyl aryl ether (Scheme 7) that is strategically different from the commonly 

reported strategies and is flexible with regard to substituent patterns.  

 

Scheme 7. Boron trifluoride mediated o-aryl rearrangement 

Compounds such as 4 are of interest because if the methylene group of the 

diarylmethane unit could be efficiently deprotonated, a flexible route to these phenols could 

lead to a direct synthesis of substituted 2,3 diarylbenzo[b]furans by a 

benzoylation/cyclization protocol (Scheme 8).   
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Scheme 8. Plausible mechanism for the formation of the 2,3-diarylbenzo[b]furan from 4 

The possible mechanism for this reaction is based on the assumption that a base 

successfully deprotonates the benzylic position which bears the most acidic hydrogen. The 

anion thus generated reacts with the carbonyl carbon giving rise to the intermediate which 

undergoes dehydration at elevated temperature to give 2,3-diarylbenzo[b]furan. 

2,3-Diarylbenzo[b]furans are a class of natural products that are broadly distributed 

and exhibit diverse biological activities.
10

 Their biological significance is exemplified by 

reserveratrol- derived natural oligomers anigopreissin A (a reserveratrol dimer) and 

amurensins  L and M (reserveratrol tetramers) inter alia and the pharmacological use of 

some other derivatives bearing the same framework.  Anigopreissin A, 6 (Figure 2) was 

isolated from root cultures of Anigozanthospreissii and from rhizomes of Musa cavendish 

plants by D. Holscher and B Schneider.
11

 The broad range of biological activities of 

resveratrol and its derivatives and their significant pharmacological potential have generated 

extensive and enduring efforts toward the syntheses of these important compounds.
12 

The 
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structure of viniferifuran (7a), was first identified from Vitis vinifera ‘Kyohou’ on the basis 

of the extensive NMR spectroscopic and chemical analysis by Niwa and coworkers.
13

 Its 

congener, gnetuhainin B, (7b) was isolated from the lianas of Gnetum hainanense by the 

Lin group.
14 

Compounds such as 8 have been found to have favorable in vitro 

pharmacological properties as highly potent and selective COX-2 inhibitors.
15

 

Figure 2. Compounds containing diaryl benzo[b]furan subunit 

Results and discussion: 

The rearrangement shown below in Scheme 9 was originally discovered when 

purification of 9 by silica gel chromatography using ethyl acetate in hexanes produced 

phenol 10 in 72% yield.  This selective reaction was mediated by the acidic surface of the 

silica gel and occurred at ambient temperature.  

 

Scheme 9. Rearrangement during column chromatography 
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To further investigate this rearrangement, we synthesized different benzyl phenyl 

ethers from the corresponding benzyl bromides and phenols using potassium carbonate as a 

base (Scheme 11).
16

 We used 4-methoxy benzyl bromide, 11 and 3,4-dimethoxy benzyl 

bromide, 12 for the synthesis of benzyl phenyl ethers. They were prepared by the action of 

phosphorus tribromide on the commercially available 4-methoxy benzyl alcohol and 3,4-

dimethoxy benzyl alcohol, respectively (Scheme 10).
17 

Figure 3 shows different ethers that 

were prepared to study the boron trifluoride mediated rearrangement. 

 

Scheme 10. Synthesis of the benzyl bromides 

 

 

Scheme 11. General Scheme for the synthesis of benzyl phenyl ethers 
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Figure 3. Various benzyl phenyl ethers that were studied for the rearrangement 

We evaluated the ethers shown in Scheme 12 and found that the ethers bearing only 

one electron-donating substituent required a Lewis acid such as boron trifluoride etherate for 

rearrangement.  Interestingly, a benzyl ether (X = H) did not react under our conditions.  

This selectivity may be useful in complex systems.   

 

Scheme 12. Rearrangement of pholoroglucinol ethers 

Benzyl ethers of sesamol were synthesized and subjected to the rearrangement 

conditions as shown in Scheme 13.  Although two isomeric phenols could have been 

produced, the rearrangement was regioselective in generating phenols 15 and 16.  These 

regioselectivities parallel the results observed in Friedel-Crafts acylation of sesamol.
18
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Scheme 13. Rearrangement of sesamol ethers 

Substituted benzyl ethers of 2,6-dimethoxyphenol were prepared and were reacted 

with boron trifluoride etherate as shown in Scheme 14.  In these cases the rearrangement 

produced the 4-benzyl phenols in good yields.   

 

Scheme 14.  Rearrangement of 2,6-disubstituted phenol ethers 

To show the synthetic utility of this rearrangement, we decided to use the previously 

described benzoylation/ cyclization strategy (Scheme 8) towards the synthesis of 2,3-

diarylbenzo[b]furans. When our initial attempts with LDA as a base did not seem to yield 

any product, we turned our attention to P4-tBu, a phosphazene base (Figure 4) as our group 

had previously demonstrated that even weakly acidic subunits such as benzyl ethers could be 

deprotonated by the strong base, P4-tBu (Scheme 15).
19
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Scheme 15. Reaction of P4-tBu on a benzyl ether  

In order to extend the collection of readily accessible, broadly applicable bases, 

Schwesinger and coworkers developed and arranged members of novel class of kinetically 

highly active uncharged phosphazene bases in order of strength and steric hindrance, to 

higher pKa values. Phosphazene bases are strong non-metallic, non-ionic and low 

nucleophilic bases. They are stronger bases than regular amine or amidine bases such 

as Hünig's base or DBU. Among the strongest of these phosphazene bases, P4-tBu is the 

most readily available. The P4-tBu base is an extremely strong nonmetallic organic base 

with pKBH+ = 42.7 in acetonitrile.
20

  

 

Figure 4. P4-tBu, Schwesinger base 

The strong nonmetallic P4-tBu base has found a variety of uses, from enolate and 

peptide alkylations to catalytic aldol reactions, desilylations and alkynyl deprotonations.
21 

Kondo and Imahori in 2003 studied a regio- and chemo- selective strategy for deprotonative 

functionalization of aromatics with P4-tBu base (Scheme 16).
22

 As the base is extremely 

basic and less nucleophilic, it allows for highly chemoselective reactions. Also, the 
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nonmetallic P4-tBu base cannot function as a Lewis acid. Therefore, the reactions using P4-

tBu base proceed without the “coordination mechanism”, and the reactions with unique 

regioselectivities can be expected. 

 

Scheme 16. Deprotonative functionalization with P4-tBu 

In an approach towards the synthesis of benzofuran, the ether 19 was regioselectively 

rearranged as shown in Scheme 17.  Benzoylation
23

 of the resulting phenol 20 followed by 

reaction with P4-tBu in benzene at 80 °C afforded benzofuran 21 in 47% yield after flash 

column chromatography.   

Scheme 17. Synthesis of the diarylbenzofuran, 21 

Conclusions: 

In conclusion the Lewis-acid mediated rearrangement of benzyl ethers into 

diarylmethanes can provide a facile entry into a 2,3-diarylbenzo[b]furan subunit via a 

benzoylation/ intramolecular cyclization using P4-tBu as a base. In terms of functionalized 

diarylmethane synthesis, the benzyl phenyl ether rearrangement of a suitable phenolic ether 
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substrate would beat the conventional o-fries rearrangement as the required one- or two-step 

carbonyl to methylene conversion can now be circumvented. 

Experimental:  

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 or 

400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Chemical shifts in 

CDCl3 were reported downfield from TMS (= 0 ppm) for 
1
H NMR.  For 

13
C NMR, chemical 

shifts were reported relative to the solvent signal [CDCl3 (77.15 ppm)].  All reactions were 

carried out under argon unless otherwise noted.  Thin-layer chromatography was performed 

using commercially available 250 micron silica gel plates (Analtech).  Commercially 

available 1000 micron silica gel plates (Analtech) were used for preparative thin-layer 

chromatography.  Visualization of TLC plates was effected with short wavelength ultra 

violet light (254 nm).  High resolution mass spectra were recorded on an Agilent 6540 

QTOF using EI or ESI.  All reagents were used directly as obtained commercially unless 

otherwise noted. 

General procedure for the preparation of aryl bromides. To a solution of the benzyl 

alcohol (1.0 equiv.) in diethyl ether were added pyridine (0.05 equiv.) and phosphorus 

tribromide (1.1 equiv.) sequentially at room temperature under argon. The reaction mixture 

was then refluxed for 1 hour. After the completion of the reaction, it was quenched with 

water. The reaction mixture was then extracted with diethyl ether (3x). The combined 

organic layers were washed with brine, dried over MgSO4 and concentrated in vacuo. The 

crude benzyl bromide was not purified and used as such. 
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1-(Bromomethyl)-4-methoxybenzene (11).  
1
H NMR (400 MHz, CDCl3): δ 7.34 (d, J = 9.0 

Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.52 (s, 2H), 3.81 (s, 3H). 

 

4-(Bromomethyl)-1,2-dimethoxybenzene (12).  
1
H NMR (400 MHz, CDCl3): δ 6.93-6.89 

(m, 2H), 6.78 (d, J = 6.0 Hz, 1H), 4.97 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H). 

General Procedure for the Preparation of Aryl Ethers. To a solution of phenol (1.0 

equiv.) in acetone was added anhydrous potassium carbonate (1.5 equiv.) at room 

temperature under argon. Benzyl bromide (1.2 equiv.) was then added drop wise and the 

reaction mixture was refluxed till the TLC indicated the completion of the reaction. After the 

completion of the reaction, water was added to it. The aqueous layer was extracted with 

ethyl acetate (3x). The combined organic layers were washed with brine, dried over MgSO4 

and concentrated in vacuo. The aryl ethers were not purified and were used as such for the 

rearrangement reaction. 

General Procedure for the rearrangement reaction. To a solution of benzyl phenyl ether 

(1.0 equiv.) in dichloromethane was added BF3.Et2O (1.0 equiv.) drop wise at 0 
o
C under 

argon atmosphere. Reaction mixture was allowed to stir at room temperature overnight. 
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After the completion of the reaction, water was added to it. The aqueous layer was extracted 

with dichloromethane (3x). The combined organic layers were washed with brine, dried over 

MgSO4 and concentrated in vacuo. The crude product was purified by column 

chromatography using ethyl acetate in hexanes as the eluent. 

 

 2-(3,4-Dimethoxybenzyl)-3,5-dimethoxyphenol (10). 
1
H NMR (400 MHz, CDCl3): δ 6.82 

(s, 1H), 6.75-6.76 (m, 2H), 6.12 (d, J = 2.0 Hz, 1H), 6.03 (d, J = 2.0 Hz, 1H), 5.50 (s, 1H of 

OH), 3.91 (s, 2H), 3.81 (s, 6H), 3.79 (s, 3H), 3.71 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 

159.67, 159.27, 155.63, 148.97, 147.33, 133.93, 120.21, 112.07, 111.44, 108.44, 93.99, 

91.58, 56.12, 55.95, 55.48, 28.15. HRMS (ESI) m/z exact mass calculated for C17H21O5 

305.1384; found 305.1388. 

 

3,5-Dimethoxy-2-(4-methoxybenzyl)phenol (13). 
1
H NMR (400 MHz, CDCl3): δ 7.14 (d, 

J = 9Hz, 2H), 6.78 (d, J = 9Hz, 2H), 6.13 (d, J = 2.4 Hz, 1H), 6.01 (dd, J = 7.8 Hz, 2.4 Hz, 

1H), 4.81 (s, 1H of OH), 3.90 (s, 2H), 3.79 (s, 3H), 3.76 (s, 6H). 
13

C NMR (100 MHz, 

CDCl3): δ 159.7, 159.3, 157.9, 155.6, 133.2, 129.4, 114.0, 108.5, 94.4, 91.5, 60.8, 55.9, 

55.5, 27.6. HRMS (ESI) m/z exact mass calculated for C16H19O4 275.1278; found 275.1268. 
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1-(Benzyloxy)-3,5-dimethoxybenzene (14). 
1
H NMR (400 MHz, CDCl3): δ 7.35- 7.46 (m, 

5H), 6.22 (d, J = 2.1Hz, 2H), 6.16 (t, J = 2.1 Hz, 1H), 5.05 (s, 2H), 3.79 (s, 3H). 
13

C NMR 

(100 MHz, CDCl3): δ 161.8, 160.9, 137.1, 128.9, 128.3, 127.9, 94.0, 93.5, 70.3, 55.6. 

HRMS (ESI) m/z exact mass calculated for C15H17O3 245.1172; found 245.1178. 

 

6-(3,4-Dimethoxybenzyl)benzo[d][1,3]dioxol-5-ol (15). 
1
H NMR (400 MHz, CDCl3): δ 

6.73-6.80 (m, 3H), 6.58 (s, 1H), 6.41 (s, 1H), 5.87 (s, 2H), 4.79 (s, 1H of OH), 3.84 (s, 3H), 

3.83 (s, 2H), 3.82 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 149.3, 148.5, 147.8, 146.8, 141.6, 

132.6, 120.6, 119.2, 112.0, 111.6, 110.1, 101.2, 98.9, 56.14, 56.1, 36.1. HRMS (ESI) m/z 

exact mass calculated for C16H15O5 287.0925; found 287.0923. 

 

6-(4-Methoxybenzyl)benzo[d][1,3]dioxol-5-ol (16). 
1
H NMR (400 MHz, CDCl3): δ 7.12 

(d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.59 (s, 1H), 6.40 (s, 1H), 5.88 (s, 2H), 4.61 (s, 

1H of OH), 3.83 (s, 2H), 3.78 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 158.4, 148.4, 146.8, 

141.7, 132.1, 129.7, 119.4, 114.3, 110.2, 101.2, 98.9, 55.5, 35.6. HRMS (ESI) m/z exact 

mass calculated for C15H13O4 257.0808; found 257.0797. 



www.manaraa.com

43 
 

 

4-(3,4-Dimethoxybenzyl)-2,6-dimethoxyphenol (17). 
1
H NMR (400 MHz, CDCl3): δ 6.74-

6.79 (m, 3H), 6.58 (s, 2H), 5.56 (s, 1H of OH), 3.89 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.83 

(s, 3H), 3.77 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 149.0, 147.4, 146.5, 145.5, 138.8, 

134.1, 127.8, 120.9, 120.2, 112.4, 111.3, 106.5, 60.7, 56.4, 56.1, 56.0, 35.4. HRMS (ESI) 

m/z exact mass calculated for C17H19O5 303.1227; found 303.1232. 

 

2,6-Dimethoxy-4-(4-methoxybenzyl)phenol (18). 
1
H NMR (400 MHz, CDCl3): δ 7.10 (d, J 

= 8.4 Hz, 2H), 6.8 (d, J = 8.8 Hz, 2H), 6.58 (s, 2H), 5.53 (s, 1H of OH), 3.88 (s, 2H), 3.86 (s, 

3H), 3.77 (s, 3H), 3.75 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 158.0, 146.5, 145.5, 138.8, 

133.7, 129.9, 128.0, 120.3, 113.9, 106.5, 60.7, 56.4, 55.5, 35.0. HRMS (ESI) m/z exact mass 

calculated for C16H17O4  273.1132; found 273.1135. 

 

5-Methoxy-2-(4-methoxybenzyl)phenol (19). 
1
H NMR (400 MHz, CDCl3): δ 7.13 (d, J = 

8.0 Hz, 2H), 7.00 (d, J =  8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 2H), 6.46 (dd, J = 8.4 Hz, 2.4 Hz, 

1H), 6.39 (d, J = 2.4 Hz, 1H), 4.95 (s, 1H of OH), 3.88 (s, 2H), 3.79 (s, 3H), 3.76 (s, 3H). 

13
C NMR (100 MHz, CDCl3): δ 159.7, 158.3, 154.9, 132.3, 131.5, 129.7, 119.7, 114.3, 
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106.3, 102.3, 55.6, 55.5, 35.2. HRMS (ESI) m/z exact mass calculated for C15H17O3 

245.1172; found 245.1174. 

 

5-Methoxy-2-(4-methoxybenzyl)phenyl benzoate (20).  A solution of benzoyl chloride 

(0.40 mL, 3.42 mmol) in dichloromethane (5 mL) was added drop-wise to a solution of 19 

(0.83 g, 3.42 mmol) and triethylamine, Et3N (0.52 mL, 3.75 mmol) in dichloromethane (20 

mL) at 0 
o
C. The reaction mixture was allowed to stir at room temperature overnight and it 

was then poured into water. The mixture was extracted with dichloromethane and the 

organic layer was washed with 10% aqueous HCl three times, saturated aqueous NaHCO3 

(twice) and brine and dried over MgSO4 and concentrated in vacuo. The product was 

purified via silica gel chromatography using 5% ethyl acetate in hexanes to give the 

benzoylated product in 70% yield. 

1
H NMR (300 MHz, CDCl3): δ 8.17 (dd, J = 8.4 Hz, 1.2 Hz, 2H), 7.65 (t, J =  6.0 Hz, 1H), 

7.54-7.49 (m, 2H), 7.15 (d, J = 8.7 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 6.6 Hz, 

2H), 6.79 (s, 1H), 3.87 (s, 2H), 3.68 (s, 3H), 3.73 (s, 3H). 
13

C NMR (75 MHz, CDCl3): δ 

165.1, 159.2, 158.2, 150.0, 133.9, 131.5, 130.5, 130.0, 128.8, 125.9, 114.0, 112.5, 108.5, 

55.7, 55.5, 35.1. 
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6-Methoxy-3-(4-methoxyphenyl)-2-phenylbenzofuran (21).  To a solution of the benzoyl 

derivative of phenol (0.27g, 0.76 mmol) in dry benzene (10mL) was added 1M solution of 

P4-tBu in hexane (0.84 mL, 0.84 mmol). The reaction mixture was refluxed for 3 hours. 

After the completion of the reaction, benzene was evaporated in vacuo. The resulting liquid 

was purified on silica gel by column chromatography using 5% ethyl acetate in hexanes as 

eluent to get pure compound in 47% yield. 
1
H NMR (300 MHz, CDCl3): δ 7.63 (d, J = 6.6 

Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.29 -7.37 (m, 4H), 7.09 (d, J = 2.1 Hz, 1H), 6.99 (d, J = 

8.7 Hz, 2H), 6.87 (dd, J = 8.7 Hz, 2.1 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H). 
13

C NMR (75 

MHz, CDCl3):  δ 159.3, 158.6, 155.1, 149.6, 131.0, 128.6, 128.0, 126.7, 125.3, 124.2, 120.4, 

117.3, 114.6, 112.1, 95.9, 56.0, 55.5. HRMS (ESI) m/z exact mass calculated for C22H19O3 

331.1334; found 331.1187. 
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CHAPTER 3. Syntheses and biological evaluations of 3-alkenyl salicylic acids 

Introduction: 

The Gram stain test, developed in the 1800s by Hans Christian Gram, is a method for 

classifying different types of bacteria using a chemical stain and viewing through a 

microscope the results on the bacteria’s protective cell wall. Most bacteria are classified into 

two groups—Gram-positive or Gram-negative—depending on whether they retain a specific 

stain color.  Gram-positive bacteria retain a purple-colored stain, while Gram-negative 

bacteria appear pinkish or red. Some examples of Gram-negative bacteria 

include Campylobacter, Enterobacter, Escherichia, Morganella, Proteus, Providencia, 

Pseudomonas, Salmonella, Shigella. 

A distinctive feature of Gram-negative bacteria is the presence of a double 

membrane surrounding each bacterial cell. Although all bacteria have an inner cell 

membrane, Gram-negative bacteria have a unique outer membrane which contains 

lipopolysaccharide (an endotoxin) which protects the sensitive inner membrane by blocking 

antibiotics, dyes, and detergents. As opposed to Gram-positive cells, Gram-negative cells are 

resistant to lysozyme and penicillin attack.  

In addition to greater resistance, Gram-negative bacteria have a great facility for 

exchanging genetic material (DNA) among strains of the same species and even among 

different species. This means that if a Gram-negative bacterium either undergoes a genetic 

change (mutation) or acquires genetic material that confers resistance to an antibiotic, the 

bacterium may later share its DNA with another strain of bacteria and the second strain can 

become resistant as well. 
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 Gram-negative bacteria can cause many types of infections and are spread to 

humans in a variety of ways. Several species, including Escherichia coli, are common 

causes of food–borne disease. Vibrio cholerae—the bacteria responsible for cholera—is a 

waterborne pathogen. Gram-negative bacteria can also cause respiratory infections, such as 

certain types of pneumonia, and sexually transmitted diseases, including gonorrhea. Yersinia 

pestis, the Gram-negative bacterium responsible for plague, is transmitted to people through 

the bite of an infected insect or handling an infected animal. 

Treating Gram-negative bacterial infections can be difficult because of several 

unique features of these bacteria. For example, the unique nature of their cell wall makes 

them resistant to several classes of antibiotics. Infections have typically been treated with 

broad-spectrum antibiotics, such as beta-lactams followed by carbapenems. However, even 

these drugs have become ineffective against some bacteria, leaving healthcare providers no 

choice but to use older drugs, such as colistin
1
, which can have toxic side effects. 

Gupta and coworkers recently isolated 3-farnesyl-2-hydroxybenzoic acid (Figure 1), 

from the leaves of Piper multiplinervium C. DC. (Piperaceae)
2
.  Piper multiplinervium C. 

DC. is a climbing shrub in tropical rainforests, which grows from Nicaragua to Peru. The 

Kuna Indians of Panama, who live in the Kuna Yala Archipelago in the north-eastern part of 

Panama prepare a traditional remedy with the young leaves of Piper multiplinervium using a 

method called “Ina Kuamakalet” in which the plant material is mixed with water to make a 

dough, which is divided into small balls and dried under the sun. The dried balls of Piper 

multiplinervium are then dissolved in water and the extract is then used to treat stomach 

aches. During the course of antimicrobial screening using the agar dilution method, the 

methanolic leaf extract of Piper multiplinervium showed significant activity at 2.5 to 5 
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µg/mL against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, 

Mycobacterium smegmatis, Klebsiella pneumoniae and Candida albicans. Moreover, it was 

active against Helicobacter pylori (MIC 12.5 µg/mL). 3-Farnesyl salicylic acid (1, Figure 1) 

is the only 2-hydroxybenzoic acid prenylated in the ortho position that has been isolated 

from plants until now. 

The great biological activity of 3-farnesyl salicylic acid against various gram 

negative bacteria prompted us to develop a synthesis of members of this class of 

compounds.  Interestingly, with its salicylic acid subunit, it might also exhibit anti-

inflammatory activity.  Related natural products include O-methylgrifolic acid (2, Figure 1) 

that was isolated from the lipophilic fraction of fresh P. dispanssus and grifolic acid (3, 

Figure 1)
3 

that was isolated from an American Albatrellus species.  

 

Figure 1.  Natural products containing salicylic acid subunit 

Currently, there exist relatively few direct methods for the synthesis of 3-substituted 

salicylic acids. Some salicylic acid derivatives can be synthesized directly from their 

corresponding phenols via a Kolbe–Schmitt carboxylation (Scheme 1)
4
; however, that 

reaction requires proper apparatus to work with carbon dioxide at high pressures and 

temperatures. 
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Scheme 1. Kolbe-Schmidt carboxylation reaction on a phenol 

 Another common route is through Reimer–Tiemann
5 

or Duff formylations
6
 of the 2-

substituted phenols to give the 3-substituted salicaldehydes followed by oxidation to the acid 

(Scheme 2). The main drawback of this reaction is that the formylation is rarely selective 

and the aldehyde can be introduced ortho and (or) para to the phenol. 

 

Scheme 2. Reimer-Tiemann and Duff formylation reactions 

Results and discussion: 

Lau reported a useful synthesis of 3-alkyl salicylic acids in 2001 using a MOM-

protected phenol
7
. We prepared the MOM ether of 2,6-dibromophenol  using MOMCl in the 

presence of diisopropylethylamine .  Alkylation of the anion generated from halogen-metal 

exchange with farnesyl bromide followed by another halogen-metal exchange and reaction 

with carbon dioxide produced the protected salicylic acid (Scheme 3).  Unfortunately, the 
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deprotection of the MOM group with aqueous acid gave a complex mixture, presumably due 

to the reactions of the trisubstituted alkenes.  

 

Scheme 3. Synthesis of MOM protected farnesyl salicylic acid 

To circumvent this difficulty, we generated the MEM ether of 2,6-dibromophenol
8
 in 

quantitative yield as shown in Scheme  4.  Halogen-metal exchange followed by reaction 

with farnesyl bromide
9
, afforded the alkylated compound in 67% yield.  Another halogen-

metal exchange and carboxylation using gaseous carbon dioxide followed by deprotection of 

the MEM ether with zinc bromide gave the natural product 1, albeit in only 10% yield over 

the last two steps. The same four step sequence was used to synthesize geranyl salicylic acid 

2,6-dibromophenol and geranyl bromide
10

 (4, Scheme 4). 

 

Scheme 4. Synthesis of 3-substituted salicylic acids 

The low yield of farnesyl salicylic acid over the last two steps could be attributed to 

the low solubility of carbon dioxide gas in THF. The lower yield prompted us to look for a 
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more soluble electrophile. Substitution of methyl chloroformate for the carbon dioxide gave 

the corresponding methyl ester in 80% yield.  Deprotection of the MEM ether and base-

mediated hydrolysis of the ester using sodium hydroxide afforded 1 in 80% yield. The 

substitution of methyl chloroformate for carbon dioxide gas yielded the desired farnesyl 

salicylic acid in 40 % yield over the last three steps, which is a four times increase. Scheme 

5 shows the first synthesis of farnesyl salicylic acid, 1.   

 

Scheme 5.  Synthesis of farnesyl salicylic acid, 1 

To study the structure activity relationships (SAR) of these types of compounds, 

different analogues of 3-substituted salicylic acid were synthesized. Prenyl salicylic acid (5) 

was synthesized (Scheme 6) using the same reaction Scheme as shown in Scheme 3, in 19% 

yield over 5 steps.  

 

Scheme 6. Synthesis of prenyl salicylic acid  
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To understand how important the double bonds were in the acyclic chain at the 3-

position, we synthesized 3-benzyl salicylic acid where the double bonds were a part of the 

benzene ring. 3-Benzyl salicylic acid was synthesized from commercially available ortho-

benzyl phenol in two steps. The first step is the Reimer-Tiemann reaction
11

 which introduces 

a –CHO group ortho and para to the hydroxyl group. This reaction, as expected was not 

selective and produced monosubstituted o- and p- aldehydes along with small amount of 

o,p- dialdehyde (Scheme 7) .  

 

Scheme 7. Products of Reimer-Tiemann reaction on o-benzylphenol 

The desired o-aldehyde was separated from the mixture using flash column 

chromatography over silica gel and was then subjected to oxidation under boiling conditions 

using silver (I) oxide which was freshly prepared by the reaction of silver (I) nitrate and 

sodium hydroxide
12

 (Scheme 8). 

 

Scheme 8. Synthesis of 3-benzyl salicylic acid 
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Biological testing: 

Compounds 1, 4, 5, 3-benzylsalicylic acid (9), 3-allylsalicylic acid prepared from 

salicylic acid
13

 (10), and commercially available 3-phenylsalicylic acid (11), were tested 

against two strains of bacteria. We used simple zone of inhibition assays to determine their 

level of antimicrobial activity.   

 

Figure 2.  Analogs  

Zone of inhibition assay 

Zone of Inhibition testing is a fast, qualitative means to measure the ability of an 

antimicrobial agent to inhibit the growth of microorganisms.
14

 The assay is performed by 

spreading a microbial suspension by a sterile swab, evenly, over the face of a sterile agar 

plate. The antimicrobial agent is applied to the center of the agar plate (in a fashion such that 

the antimicrobial doesn't spread out from the center) and incubated. If substantial 

antimicrobial activity is present, then a zone of inhibition appears around the test product. 

The zone of inhibition is simply the area on the agar plate that remains free from microbial 

growth. The size of the zone of inhibition is usually related to the level of antimicrobial 

activity present in the sample or product - a larger zone of inhibition usually means that the 

antimicrobial is more potent. 
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Strengths of Zone of Inhibition Testing:  Zone of inhibition testing is fast and inexpensive 

relative to other laboratory tests for antimicrobial activity. It is especially well suited for 

qualitatively determining the ability of water-soluble antimicrobials to inhibit the growth of 

microorganisms. A number of samples can be screened for antimicrobial properties quickly 

using this test method. A variety of antimicrobial product types can be tested using this 

method. Liquids, coated antimicrobial surfaces, and antimicrobial-impregnated solid 

products can all be tested for their ability to produce a "zone of inhibition." 

Weaknesses of Zone of Inhibition Testing:  Zone of Inhibition tests do not necessarily 

indicate that microorganisms have been killed by an antimicrobial product - just that they 

have been prevented from growing. Microbial growth agars themselves may interfere with 

the function of some antimicrobial agents. The method cannot be used to test the activity of 

antimicrobial agents against viruses, since viruses don't "grow" on agar plates like bacteria 

because they don't replicate outside of their host organisms. 

Results of zone of inhibition assays 

Compounds 1, 4, 5, 3-methylsalicylic acid and 3-benzylsalicylic acid, 9 (~50 

mg/mL), along with solvent (DMSO) alone, were applied to a 10 mm filter paper disc and 

positioned at the center of an agar plate that had been inoculated with a wild type E. coli 

(strain K12).  Following incubation at 37 
o
C for 24 hours, the zone of inhibition (ZOI) was 

measured.  We observed that 3-methylsalicylic acid, as well as solvent alone failed to inhibit 

bacterial growth (ZOI = 0).   

Zone of inhibition assays of the various salicylic acid analogues yielded the 

following results. The control consisted of salicylic acid and DMSO. With strain MG1655, 
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compound 1 and 4 gave ZOI values of 5.5 mm and 7 mm respectively whereas the salicylic 

acid and DMSO solvent control was found to have a ZOI = 5 mm. With another strain 

NR688, compound 1 and 4 were found to have ZOI = 8 mm and 14 mm respectively. The 

salicylic acid and DMSO control had the same ZOI value as it did with strain MG 1655. In 

contrast, the antibiotic tetracycline gave zones of inhibition of 10 mm (MG1655) and 12 mm 

(NR688). Prenyl salicylic acid, 5 did not show any activity against these strains. 

Effect of EDTA on cell membranes  

As mentioned earlier, Gram-negative bacteria are resistant to a large number of 

noxious agents as a result of the effective permeability barrier function of their outer 

membrane (OM). Such permeability barriers have been thought to be responsible for the 

resistance of Escherichia coli and other Gram negative organisms to chloramphenicol,
 15

 

actinomycin D
16

, benzyl penicillin
17

 and vancomycin
18

. The molecular basis of the integrity 

of the OM lies in its lipopolysaccharide (LPS)-covered surface.
19

 Because of the presence of 

a number of negative charges in its lipid and inner-core parts, LPS is polyanionic and 

therefore, can bind cations. Adjacent polyanionic LPS molecules are linked electrostatically 

by divalent cations (Mg
2+

, Ca
2+

), inherent in the OM, to each other to form a stable 

“covering” on the surface of the OM. These cation-binding sites of LPS are therefore 

essential for the integrity of the OM. From studies done on the naturally occurring 

polycationic antibiotics of the polymyxin group, it has been known that they complex 

strongly with LPS and upset the entire OM, which helps them to penetrate the OM to reach 

their final target, the cytoplasmic membrane.  
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A chelating agent, such as ethylenediamine tetraacetic acid (EDTA)
20 

can also bind 

Ca
2+ 

and Mg
2+

ions. Its OM-disorganizing and permeabilizing action is well known. EDTA 

has a profound effect on the OM permeability barrier of Gram-negative enteric bacteria and 

P. aeruginosa.
21

 By chelation, it removes stabilizing divalent cations from their binding sites 

in lipopolysacchride. This results in the release of a significant proportion of 

lipopolysacchride from the cells, as first shown by Leive
22

 in 1965. The permeability-

increasing effect is at least partly facilitated by the activation of the detergent-resistant 

phospholipase A1. Under certain conditions, the OM becomes ruptured and permeable to 

macromolecules. 

The molecular mechanism by which the EDTA-treated OM allows the penetration of 

hydrophobic compounds is not known, but it is very logical to suggest that the loss of LPS 

will secondarily lead to the appearance of phospholipids in the outer leaflet of the OM. The 

formed phospholipid bilayer patches would then act as channels through which hydrophobic 

compounds, such as antibiotics can diffuse.  

As EDTA helps in the penetration of lipophilic compounds by rupturing the OM, we 

decided to synthesize 14 and study the effect of EDTA, if any, on its biological activity. 

Compound 14 was synthesized from commercially available 5-chlorosalicylic acid and the 

di-anhydride of EDTA (Scheme 9)
23

.  
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Scheme 9. Synthesis of 14 

This EDTA conjugate did not show any antibacterial activity against MG1655 and NR688, 

as indicated by its zone of inhibition assay. 

Conclusions: 

While compounds 1 and 4 showed low levels of antimicrobial activity against both 

E. coli strains, these results indicate that the antimicrobial activity reported by Rüegg et al. 

cannot be explained solely by the presence of salicylic-acid derivatives. Evaluation of 3-

methyl salicylic acid, 1 and 4 showed that the alkene is important for biological activity. 

Further testing on 3-benzyl salicylic acid, 9 and 3-phenyl salicylic acid, 11 showed that the 

double bonds need to be present in an acyclic chain form and not as a part of the benzene 

ring. The synthesis of salicylic acid 1 in five steps from commercially available 2,6-

dibromophenol makes available a novel antibiotic for further biological evaluation.   

Experimental: 

All NMR spectra were obtained on a Varian VXR spectrometer, operating at 300 or 

400 MHz for 
1
H NMR and 75 or 100 MHz for 

13
C NMR instrument.  Chemical shifts in 
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CDCl3 were reported downfield from TMS (= 0 ppm) for 
1
H NMR.  For 

13
C NMR, chemical 

shifts were reported relative to the solvent signal [CDCl3 (77.15 ppm)]. Chemical shifts in 

(CD3)2SO were reported relative to the solvent signal [(CD3)2SO (2.50 ppm)].   All reactions 

were carried out under argon unless otherwise noted.  Thin-layer chromatography was 

performed using commercially available 250 micron silica gel plates (Analtech).  

Preparative thin-layer chromatography was performed using commercially available 1000 

micron silica gel plates (Analtech).  Visualization of TLC plates was effected with short 

wavelength ultra violet light (254 nm).  High resolution mass spectra were recorded on an 

Agilent 6540 QTOF using EI or ESI.  All reagents were used directly as obtained 

commercially unless otherwise noted. 

Antimicrobial activity assays: We tested the antimicrobial activity of the compound 

using a standard disc diffusion assay.  For this we inoculated 10 cm LB agar plates with 

overnight cultures of wild-type Escherichia coli K-12 along with a K-12 mutant (strain 

NR688) with impaired LPS biosynthesis showing heightened sensitivity to hydrophobic 

drugs.
24

 Sterile filter paper disks (5 mm) were positioned at the center of the plates and 

impregnated with either 2 mg of each compound, or antibiotic control (tetracycline, 15 mg).  

The diameter of the zone of inhibition of growth around each disk was recorded in mm after 

overnight incubation at 37 °C. 

 

1,3-Dibromo-2-((2-methoxyethoxy)methoxy)benzene.  In an oven-dried flask under 

argon, 2,6-dibromophenol (2.04 g, 8.09 mmol) was dissolved in 20 mL dry 
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dichloromethane.  To this were added diisopropylethylamine (7.05 mL, 40.46 mmol) and 

MEMCl (2.84 mL, 25.08 mmol).  The mixture was allowed to stir at room temperature 

overnight, where it was worked up with saturated NaHCO3, extracted with dichloromethane, 

and dried over MgSO4.  Purification by silica gel chromatography using 10% ethyl acetate in 

hexanes yielded the protected phenol in 95% yield.   
1
H NMR (300 MHz, CDCl3): δ 7.46 (d, 

J = 7.8 Hz, 2H), 6.82 (t, J = 7.95 Hz, 1H), 5.23 (s, 2H), 4.07 (t, J = 4.65 Hz, 2H), 3.59 (t, J = 

4.65 Hz, 2H), 3.35 (s, 3H). 
13

C NMR (75 MHz, CDCl3): δ 151.7, 133.1, 126.8, 118.8, 98.6, 

71.9, 70.1, 59.3. HRMS (EI) m/z exact mass calculated for C10H12Br2O3 337.9153; found 

337.9160. 

 

1-Bromo-3-methylbut-2-ene.  To a solution of 3-methylbut-2-en-1-ol (2.06 g, 23.97 mmol) 

in diethyl ether (25 mL) was added phosphorus tribromide (2.73 mL, 28.76 mmol) at 0 
o
C 

under argon. The reaction mixture was stirred at 0 
o
C for 1 h. After the completion of the 

reaction, it was diluted with diethyl ether and washed with an aqueous solution of NaHCO3. 

The combined organic layers were washed with brine, dried over MgSO4 and concentrated 

in vacuo. The crude prenyl bromide was not purified and used as such. 
1
H NMR (300 MHz, 

CDCl3): δ 5.51 (t, J = 5.55 Hz, 1H), 4.00 (d, J = 8.4 Hz, 2H), 1.77 (s, 3H), 1.72 (s, 3H). 

 

1-Bromo-2-((2-methoxyethoxy)methoxy)-3-(3-methylbut-2-en-1-yl)benzene. The MEM 

protected phenol (1.18 g, 3.48 mmol) in dry THF (10 mL) was treated with 2.5 M n-BuLi 
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(1.39 mL, 3.47 mmol) at -78 
o
C under argon. The reaction mixture was stirred at this 

temperature for 30 minutes. The resultant mixture was treated with a solution of freshly 

prepared prenyl bromide (0.62 g, 4.16 mmol) in THF (2 mL). The reaction mixture was 

allowed to warm to room temperature and allowed to stir overnight, where it was worked up 

with aqueous NH4Cl, extracted with diethyl ether, dried over MgSO4 and concentrated in 

vacuo. Purification via silica gel chromatography using 5% ethyl acetate in hexanes yielded 

pure compound in 67 % yield. 
1
H NMR (300 MHz, CDCl3): δ 7.38 (d, J = 8.1 Hz, 1H), 7.12 

(d, J = 7.5 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 5.30-5.25 (m, 1H), 5.18 (s, 2H), 4.01 (t, J =  

4.65 Hz, 2H), 3.61 (t, J =  4.65 Hz, 2H), 3.44 (d, J =  7.2 Hz, 2H), 3.40 (s, 3H), 1.75 (s, 3H), 

1.70 (s, 3H). 
13

C NMR (75 MHz, CDCl3): δ 18.0, 25.9, 29.2, 59.2, 69.7, 71.9, 98.8, 117.5, 

122.4, 125.8, 129.3, 131.3, 133.3, 137.6, 152.7. 

 

Methyl-2-((2-methoxyethoxy)methoxy)-3-(3-methylbut-2-en-1-yl)benzoate. The prenyl 

adduct (0.32 g, 0.97 mmol) in dry THF (10 mL) was treated with 2.5 M n-BuLi (0.43 mL, 

1.07 mmol) at -78 
o
C under argon. The reaction mixture was stirred at this temperature for 

30 minutes. A solution of methyl chloroformate (0.11 mL, 1.46 mmol) in THF (2mL) was 

added to the reaction mixture, which was then warmed to room temperature for 3 hr, where 

it was quenched with HCl. The reaction mixture was extracted with ethyl acetate, dried over 

MgSO4 and concentrated in vacuo. Purification via silica gel chromatography using 15 % 

ethyl acetate in hexanes yielded pure compound in 59 % yield. 
1
H NMR (300 MHz, CDCl3): 

δ 7.65 (dd, J =  7.8 Hz, 1.8 Hz, 1H), 7.34 (dd, J =  7.5 Hz, 1.5Hz, 1H),  7.09 (t, J =  7.65 Hz, 
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1 H), 5.31-5.26 (m, 1H), 5.14 (s, 2H), 3.92 (t, J =  4.65 Hz, 2H) 3.88 (s, 3H), 3.57 (t, J = 

4.65 Hz, 2H), 3.45 (d, J =  7.2 Hz, 2H), 3.38 (s, 3H), 1.74 (s, 3H), 1.70 (s, 3H). 
13

C NMR 

(75 MHz, CDCl3): δ 18.1, 26.0, 28.6, 52.4, 59.3, 69.4, 71.9, 100.3, 122.4, 124.2, 124.7, 

129.4, 133.5, 134.2, 136.8, 155.7, 167.0. 

 

Methyl 2-hydroxy-3-(3-methylbut-2-en-1-yl)benzoate . The MEM protecting group was 

removed using ZnBr2. The ZnBr2 was freshly prepared by suspending oven-dried zinc 

powder (0.70g) in 5 mL dry THF. To this was added 1,2-dibromoethane (0.99 mL) and the 

solution was heated to reflux overnight, during which time the color turned cloudy white. 

The MEM protected phenol from the previous step (0.29 g, 0.97 mmol) was added to this 

freshly prepared ZnBr2 solution. The reaction mixture was then stirred overnight at room 

temperature. The reaction was worked up with H2O, extracted with ether, dried over MgSO4 

and concentrated in vacuo. Purification via silica gel chromatography using 5 % ethyl 

acetate in hexanes yielded pure compound in 70 % yield. 
1
H NMR (300 MHz, CDCl3): δ 

11.09 (s, 1H), 7.70 (dd, J =  7.95 Hz, 1.65 Hz, 1H), 7.33 (d, J =  7.5 Hz, 1H), 6.81 (t, J = 7.5  

Hz, 1H), 5.38-5.32 (m, 1H), 3.94 (s, 3H), 3.39 (d, J =  7.2 Hz, 2H), 1.78 (s, 3H), 1.74 (s, 

3H). 
13

C NMR (75 MHz, CDCl3): δ 18.0, 26.0, 28.1, 52.4, 112.0, 118.8, 122.0, 127.7, 130.3, 

133.4, 135.4, 159.9, 171.3. 
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2-Hydroxy-3-(3-methylbut-2-en-1-yl)benzoic acid (5).  To a solution of methyl ester 

(0.095 g, 0.43 mmol) from the previous step in methanol (5mL) was added a solution of 

NaOH (00.069 g , 1.72 mol) in H2O (2.5 mL) and the resulting suspension was heated at 55 

o
C for 3 hours. After the reaction was done, it was cooled to room temperature and washed 

with diethyl ether. The aqueous layer was acidified (1N HCl) and the suspension was 

extracted with ethyl acetate, dried over MgSO4 and concentrated in vacuo to give the prenyl 

salicyclic acid as an off-white solid in 67 % yield. 
1
H NMR (300 MHz, CDCl3): δ 10.66 (s, 1 

H), 7.79 (dd, J = 7.95 Hz, 1.65 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 

5.35-5.29 (m, 1H), 3.37 (d, J = 7.2 Hz, 2H), 1.77 (s, 3H), 1.73 (s, 3H). 
13

C NMR (75 MHz, 

CDCl3): δ 18.0, 26.0, 28.1, 110.9, 119.3, 121.7, 128.7, 130.6, 133.7, 136.8, 160.5, 175.6. 

HRMS (EI) m/z exact mass calculated for C12H14O3   206.0943; found 206.0947. 

 

1-Bromo-2-((2-methoxyethoxy)methoxy)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-

trien-1-yl)benzene.  The MEM protected phenol (1.02 g, 2.99 mmol) was dissolved in dry 

THF (10 mL) under argon at -78 
o
C.  To this was carefully added a solution of 2.5 M n-BuLi 

(1.2 mL, 2.99 mmol) and the reaction was stirred at -78 
o
C for 30 minutes.  The reaction 

mixture was then treated with a solution of freshly prepared farnesyl bromide (0.94 g, 3.29 

mmol) in 5 mL THF.  The reaction was allowed to warm to room temperature and allowed 

to stir overnight, where it was worked-up with aqueous NH4Cl, extracted with ether, and 
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dried over MgSO4.  Purification via silica gel chromatography using 5% ethyl acetate in 

hexanes yielded the desired compound in 67% yield.  
1
H NMR (300 MHz, CDCl3): δ 7.38 

(d, J = 6.0 Hz, 1H), 7.12 (d, J = 5.7 Hz, 1H), 6.92 (t, J = 5.85 Hz, 1H), 5.31-5.28 (m, 1H), 

5.18 (s, 2H), 5.14-5.07 (m, 2H), 4.01 (t, J = 3.5 Hz, 2H), 3.61 (t, J = 3.6 Hz, 2H), 3.46 (d, J 

= 5.4 Hz), 3.40 (s, 3H), 2.13-1.95 (m, 8H), 1.69 (s, 3H) 1.67 (s, 3H), 1.60 (s 6H). 
13

C NMR 

(75 MHz, CDCl3): δ 152.6, 137.6, 135.4, 133.6, 131.3, 129.3, 128.7, 125.9, 124.5, 123.3, 

118.4, 116.4, 98.8, 71.9, 69.7, 59.3, 39.9, 39.5, 29.0, 27.0, 26.7, 26.0, 18.0, 16.4, 16.3. 

HRMS (ESI) m/z exact mass calculated for C25H37BrO3 464.1926; found 464.1938. 

 

Methyl 2-((2-methoxyethoxy)methoxy)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-

1-yl)benzoate.  Farnesyl adduct (0.61 g, 1.13 mmol) was dissolved in 10 mL dry THF at -78 

o
C, where it was treated with 2.5 M n-BuLi (0.50 mL, 1.25 mmol) for 30 minutes.  A 

solution of methyl chloroformate (0.13 mL, 1.69 mmol) in THF (2 mL) was added to the 

reaction mixture, which was then warmed to room temperature and allowed to stir overnight, 

where it was quenched with HCl. The reaction mixture was extracted with ethyl acetate, 

dried over MgSO4 and concentrated in vacuo. Purification via silica gel chromatography 

using 15 % ethyl acetate in hexanes yielded pure compound in 80 % yield. 
1
H NMR (300 

MHz, CDCl3): δ 7.64 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 7.65 

Hz, 1H), 5.32-5.27 (m, 1H), 5.13 (s, 2H), 5.13- 5.05 (m, 2H), 3.92 (t, J = 4.65 Hz, 2H), 3.87 

(s, 3H), 3.57 (t, J = 4.65 Hz, 2H), 3.46 (d, J = 7.2 Hz, 2H), 3.37 (s, 3H), 2.12-1.96 (m, 8H), 

1.67 (s, 3H), 1.66 (s, 3H), 1.58 (s, 6H). 
13

C NMR (100 MHz, CDCl3): δ 167.0, 155.7, 137.3, 
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136.7, 135.5, 134.1, 132.6, 129.4, 125.1, 124.6, 124.2, 122.2, 100.3, 71.9, 69.4, 59.3, 52.3, 

39.9, 32.2, 28.3, 26.9, 25.9, 23.6, 17.9, 16.4, 16.3. HRMS (ESI) m/z exact mass calculated 

for C27H41O5 445.2949; found 445.2954. 

 

Methyl-2-hydroxy-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)benzoate. The 

MEM protecting group was removed using ZnBr2. The ZnBr2 was freshly prepared by 

suspending oven-dried zinc powder (0.16 g, 2.55 mmol) in 10 mL dry THF. To this was 

added 1,2-dibromoethane  (0.24 mL, 2.81 mmol) and the solution was heated to reflux 

overnight, during which time the color turned cloudy white. Methyl ester from the previous 

step (0.10 g, 0.23 mmol) was added to this freshly prepared ZnBr2 solution. The reaction 

mixture was stirred overnight at room temperature. The reaction was worked up with H2O, 

extracted with ether, dried over MgSO4 and concentrated in vacuo. Purification via silica gel 

chromatography with 5 % ethyl acetate in hexanes yielded pure compound in 70 % yield.
 1

H 

NMR (300 MHz, CDCl3): δ 11.05 (s, OH), 7.69 (d, J = 8.1 Hz, 1H), 7.32 (d, J = 7.5 Hz, 

1H), 6.80 (t, J = 7.65 Hz, 1H), 5.36-5.31 (m, 1H), 5.14-5.07 (m, 2H), 3.93 (s, 3H), 3.38 (d, J 

= 7.5 Hz, 2H), 2.12-1.99 (m, 8H), 1.70 (s, 3H), 1.68 (s, 3H), 1.60 (s, 6H).
 13

C NMR (75 

MHz, CDCl3): 171.3, 159.9, 137.2, 135.4, 130.2, 127.6, 125.2, 124.6, 124.3, 121.8, 118.8, 

111.9, 52.4, 39.9, 32.2, 27.8, 26.9, 26.7, 26.6, 26.0, 17.9, 16.3. HRMS (ESI) m/z exact mass 

calculated for C23H33O3 357.2424; found 357.2430. 
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2-Hydroxy-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)benzoic acid (1). To a 

solution of the phenolic compound (0.047 g, 0.13 mmol) from the previous step in MeOH (5 

mL) was added a solution of NaOH (0.02 g, 0.53 mmol) in H2O (0.7 mL) and the resulting 

suspension was heated at 55 
o
C for 3 hours. After the reaction was done, it was cooled to 

room temperature and washed with diethyl ether. The aqueous layer was acidified with 1N 

HCl and the suspension was extracted with ethyl acetate, dried over MgSO4 and 

concentrated in vacuo to give the farnesyl salicyclic acid in 72 % yield. 
1
H NMR (300 MHz, 

CDCl3): δ 10.68 (s, OH), 7.80 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 6.86 (t, J = 7.2 

Hz, 1H), 5.36-5.32 (m, 1H), 5.13-5.07 (m, 2H), 3.39 (d, J = 7.5 Hz, 2H), 2.15-1.98 (m, 8H), 

1.72 (s, 3H), 1.68 (s, 3H), 1.60 (s, 6H). 
13

C NMR (75 MHz, CDCl3): δ 175.4, 160.6, 137.3, 

136.6, 135.3, 130.5, 128.7, 125.2, 124.6, 124.3, 121.6, 119.2, 110.8, 40.2, 40.0, 32.2, 27.9, 

26.7, 25.9, 17.9, 16.4, 16.3. HRMS (ESI) m/z exact mass calculated for C22H29O3 341.2122; 

found 341.2129. 

 

(E)-1-Bromo-3-(3,7-dimethylocta-2,6-dien-1-yl)-2-((2methoxyethoxy)methoxy)benzene. 

The MEM-protected phenol (0.37 g, 0.93 mmol) in THF (10 mL) was treated with 2.5 M n-

BuLi (0.37 mL, 0.93 mmol) at -78 
o
C for 30 min under argon.  The resultant mixture was 

treated with a solution of freshly prepared geranyl bromide (0.24 g, 1.1 mmol) in THF (2 

mL). The reaction mixture was allowed to warm to room temperature where it was stirred 



www.manaraa.com

68 
 

overnight.  The reaction was worked up with aqueous NH4Cl, extracted with diethyl ether, 

dried over MgSO4 and concentrated in vacuo. Purification via silica gel chromatography 

using 5% ethyl acetate in hexanes yielded the geranyl adduct in 83% yield.  
1
H NMR (300 

MHz, CDCl3): δ 7.49 (d, J = 6.0 Hz, 1H), 7.11 (d, J = 6.0 Hz, 1 H), 6.93 (t, J = 6.0 Hz, 1H), 

5.28 (t,  J = 6.0 Hz, 1H), 5.18 (s, 2H), 5.10 (t,  J = 6.0 Hz, 1H), 4.02 (t, J = 6.0 Hz, 2H), 3.62 

(t, J = 6.0 Hz, 2H), 3.46 (d,  J = 6.0 Hz, 1H), 3.40 (s, 3H), 2.10-2.05 (m, 4H),1.68 (s, 6H), 

1.60 (s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 152.6, 137.3, 133.6, 131.8, 131.3, 129.3, 

125.9, 124.4, 122.2, 117.6, 98.8, 71.9, 69.7, 59.3, 39.9, 29.0, 26.8, 26.0, 18.0, 16.4. HRMS 

(ESI) m/z exact mass calculated for C20H29BrO3 396.1300; found 396.1308. 

 

(E)-3-(3,7-Dimethylocta-2,6-dien-1-yl)-2-hydroxybenzoic acid (4). Geranyl adduct (0.21 

g, 0.77 mmol) was dissolved in 10 mL dry THF at -78 
o
C, where it was treated with 2.5 M 

n-BuLi (0.31 mL, 0.77 mmol) for 30 min. Carbon dioxide gas was bubbled through the 

solution and warmed to room temp for 2 h.  The reaction was worked up with acetic acid 

and concentrated.  The crude product was used in the next step without further purification. 

Zinc bromide was prepared on the same scale as in the synthesis of 1. The starting material 

was added to the zinc bromide solution in THF and stirred overnight.  The reaction was 

worked up with H2O, extracted with diethyl ether, dried over MgSO4 and concentrated in 

vacuo. Purification via silica gel chromatography using 15% ethyl acetate in hexanes yielded 

4 as an off-white solid in 74% yield over 2 steps.  
1
H NMR (300 MHz, CDCl3): δ 10.72 (s, 

OH), 8.02 (d, J = 6.0 Hz, 1H), 7.38 (d, J = 6.0 Hz), 7.03 (t, J = 6.0, 1H), 5.32 (t, J = 6.0 Hz, 
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1H), 5.10 (t, J = 6.0 Hz, 1H), 3.51 (d, J = 6.0 Hz, 1H), 2.03-1.96 (m, 4H), 1.68 (s, 6H), 1.60 

(s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 169.5, 153.1, 136.8, 136.0, 132.0, 131.2, 124.2, 

121.6, 119.7, 116.0, 47.8, 41.2, 39.8, 32.0, 23.1, 19.9. HRMS (ESI) m/z exact mass 

calculated for C17H22O3  274.1569; found 274.1575. 

 

3-Benzyl-2-hydroxybenzaldehyde (6).  In a three-necked flask fitted with a reflux 

condenser was placed 2-benzyl phenol (1.00 g, 5.43 mmol) in 10 mL 95% ethanol. It was 

stirred before a solution of NaOH in H2O (1.57 g in 3.3 mL H2O) was rapidly added. The 

reaction mixture was then heated to 80 
o
C and chloroform (0.70 mL, 8.65 mmol) was added 

drop-wise to maintain gentle refluxing. Near the end of the addition, the sodium salt of the 

aldehyde separated out. Stirring was continued for an additional 1 h after all the chloroform 

was added. Ethanol and excess chloroform were then removed on a rotary evaporator. HCl 

was added to the residue with stirring until the contents of the flask were acidic. Ethyl 

acetate was then added to the solution to extract the organic compound. The organic layer 

was washed with water twice, dried over MgSO4 and concentrated on rotary evaporator. The 

crude was purified via silica gel column chromatography using 10% ethyl acetate in hexanes 

to separate the desired o-aldehyde from the undesired p- aldehyde and o,p- disubstituted 

aldehyde. 
1
H NMR (300 MHz, CDCl3): δ 11.38 (s, OH), 9.89 (s, 1H), 7.45 (d, J = 1.8 Hz, 

1H), 7.43-7.22 (m, 6H), 6.96 (t, J = 7.5 Hz, 1H), 4.04 (s, 2H).  
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3-Benzyl-4-hydroxybenzaldehyde (7).  
1
H NMR (300 MHz, CDCl3): δ 9.78 (s, 1H), 7.70-

7.67 (m, 2H), 7.30-7.22 (m, 5H), 6.96 (d, J = 9 Hz, 1H), 4.05 (s, 2H).  

 

5-Benzyl-4-hydroxyisophthalaldehyde (8). 
1
H NMR (300 MHz, CDCl3): δ 11.93 (s, OH), 

9.99 (s, 1H), 9.88 (s, 1H), 8.01 (d, J = 2.1 Hz, 1H), 7.89 (d, J = 2.1 Hz, 1H), 7.32- 7.23 (m, 

5H), 4.07 (s, 2H). 

 

3-Benzyl-2-hydroxybenzoic acid (9).  Fresh was prepared by treating a solution of AgNO3 

(0.157g, 0.92 mmol) with 1M aq. NaOH solution (0.93 mL) at room temperature for 30 

minutes. A solution of 3-benzyl-2-hydroxybenzaldehyde (0.098g, 0.462 mmol) in 3mL 1M 

aq. NaOH solution was added to the suspension of silver (I) oxide and the mixture was 

refluxed for 2 h. After cooling, the mixture was filtered to remove metallic silver and the aq. 

alkaline filtrate was washed once with diethyl ether, acidified with 10% HCl and extracted 

with diethyl ether. The organic layer was washed with brine, dried over MgSO4 and 

concentrated in vacuo. 
1
H NMR (300 MHz, CDCl3): δ 10.69 (s, OH), 7.83 (dd, J = 7.95 Hz, 
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1.65 Hz), 7.36-7.21 (m, 6H), 6.87 (t, J = 7.8 Hz, 1H), 4.03 (s, 2H). HRMS (ESI) m/z exact 

mass calculated for C14H11O3 227.0714; found 227.0717. 

 

5-Chloro-3-((2-chloroacetamido)methyl)-2-hydroxybenzoic acid (12). A finely 

pulverized mixture of 5-chlorosalicylic acid (0.68 g, 3.93 mmol) and 2-chloro-N-

(hydroxymethyl)acetamide (0.49 g, 3.93 mmol) was added portion-wise with stirring to a 

conc. H2SO4 (4.0 mL) at 10 
o
C. After the mixture was stirred at room temperature for 16 h, 

it was poured into ice. The crude amide precipitated out as a cream colored powder. 
1
H 

NMR (300 MHz, d-DMSO): δ 8.66 (t, J = 5.9 Hz, 1H), 7.64 (d, J = 2.7 Hz, 1H), 7.38 (d, J = 

2.7 Hz, 1H), 4.28 (d, J = 6 Hz, 2H), 4.13 (s, 2H). HRMS (ESI) m/z exact mass calculated for 

C10H10Cl2NO4 277.9981; found 277.9975. 

 

(3-Carboxy-5-chloro-2-hydroxyphenyl)methanaminium chloride (13). The crude amide 

from the previous step was hydrolyzed in EtOH- conc. HCl (10:3; v:v) 10mL at reflux for 

1.5 h. After cooling to room temperature, the crude product as a white solid precipitated out. 

The solid product was filtered out and air dried before using for the next step. HRMS (ESI) 

m/z exact mass calculated for C8H9ClNO3 202.0265; found 202.0725. 
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3,3’-(5,8-Bis(carboxymethyl)-3,10-dioxo-2,5,8,11-tetraazadodecane-1,12-diyl)bis(5-

chloro-2-hydroxybenzoic acid) (14). EDTA di-anhydride (0.03 g, 0.13 mmol) was added 

portion wise to a solution of the methanaminium chloride from the previous step (0.06 g, 

0.27 mmol) and triethylamine, Et3N (0.29 mmol, 0.04 mL) in dry DMF (5 mL) under argon 

at room temperature. After stirring the reaction mixture at room temperature overnight, it 

was concentrated on rotary evaporator. Chloroform was added to the concentrated solution 

to give the product as a white solid. The supernatant liquid was removed and the residue was 

triturated twice with chloroform. The solid product was filtered and dried under vacuum. 
1
H 

NMR (300 MHz, d-DMSO): δ 8.55 (t, J = 5.7 Hz, 2H), 7.58 (d, J = 2.7 Hz, 2H), 7.29 (d, J = 

2.7 Hz, 2H), 4.26 (d, J = 5.4 Hz, 4H), 3.64 (s, 4H), 3.58 (s, 4H), 3.00 (s, 4H). 
13

C NMR (75 

MHz, d-DMSO): δ 171.9, 171.5, 170.0, 163.0, 158.9, 132.7, 129.4, 128.2, 121.9, 116.3, 

57.1, 55.4, 52.4, 46.4. HRMS (ESI) m/z exact mass calculated for C26H27Cl2N4O12 657.1008; 

found 657.1002. 
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GENERAL CONCLUSIONS 

 

The synthesis and study of some biologically active compounds have been shown in 

this dissertation.  Chapter 1 describes the synthetic efforts towards the tetracyclic core of 

kinobscurinone. A novel Michael addition/ cyclization strategy has been used towards the 

construction of the tetracyclic skeleton. The use of LDA for the cyclization not only affects 

the cyclization but also aids in the removal of the nitro group from the Michael adduct. 

Various novel indenones (Michael acceptors) and Michael donors were synthesized for this 

study. Though our efforts with oxidation did not meet with the success we would have liked, 

this strategy, nevertheless, presents an efficient way of synthesizing molecules with 

benzo[b]fluorene skeleton. 

Chapter 2 describes our recent studies in the benzyl phenyl rearrangement chemistry. 

Boron trifluoride was successfully used for the rearrangement of a number of substituted 

benzyl phenyl ethers to their corresponding benzyl phenols in good yields. The study also 

showed that for rearrangement to occur, it was absolutely crucial to have a methoxy group at 

para- position in the migrating benzyl ring. The synthetic utility of this type of 

rearrangement was further shown by the conversion of one of the rearranged products to a 

2,3-diarylbenzo[b]furan using P4-tBu as a base.  

Chapter 3 describes the syntheses and determination of biological activities of 3-

farnesyl salicyclic acid and its analogues. Three 3-alkenyl salicylic acids namely, 3-farnesyl, 

3-geranyl and 3-prenyl salicylic acids, were synthesized in five steps from commercially 

available 2,6-dibromophenol. This five-step sequence represents the first total synthesis of 

biologically active 3-fartnesyl salicylic acid. Other analogues which were synthesized for 
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biological evaluations include 3-benzyl salicylic acid and 3,3’-(5,8-bis(carboxymethyl)-

3,10-dioxo-2,5,8,11-tetraazadodecane-1,12-diyl)bis(5-chloro-2-hydroxybenzoic acid). While 

3-farnesyl salicylic acid and 3-geranyl salicylic acid showed low levels of antimicrobial 

activity against E. coli strains, the EDTA-5-chlorosalicylic acid hybrid molecule did not 

show any. Further evaluation of various analogues showed that the alkene is important for 

the biological activity and that the double bonds are required to be present in an acyclic 

chain form and not as a part of the benzene ring.  
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